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Abstract-The axisymmetric steady laminar compressible boundary layer swirling flow ofa gas with variable 
properties in a nozzle has been investigated. The partial differential equations governing the non-similar flow 
have been transformed into new co-ordinates having finite ranges by means of a transformation which maps 
an infinite range into a finite one. The resulting equations have been solved numerically using an implicit 
finite-difference scheme. The computations have been carried out for compressible swirling flow through a 
convergent conical nozzle. The results indicate that the swirl exerts a strong influence on the longitudinal skin 
friction, but its effect on the tangential skin friction and heat transfer is comparatively small. The effect of the 
variation of the density-viscosity product across the boundary layer is appreciable only at low-wall 
temperature. The results are in good agreement with those of the local-similarity method for small values of 

the longitudinal distance. 

NOMENCLATURE 

b” 
scale factor in equation (5); 

d,, c,, 
constant ; 

skin-friction coefficients along 5 
and v] directions, respectively; 

L 

dimensionless stream function; 
mass-transfer parameter defined by 
equation (7); 

f’, dimensionless longitudinal velocity, u/u,; 

FL S;, surface skin-friction parameters 
along 4 and r] directions defined by 
equation (4d); 
dimensionless total enthalpy, H/H,; 

cooling parameter, H,/H,; 

surface heat-transfer parameter defined 
by equation (4d); 
enthalpy ; 
total enthalpy, h + (uz + v2)/2; 

length of the nozzle measured along 
[ direction ; 
Prandtl number ; 
heat-transfer rate ; 
surface or body radius; 
dimensionless swirl velocity, v/v,; 
Stanton number; 
temperature ; 

u, v, w, velocity components along r, q, [ 
directions, respectively; 

&2& v=l2& dissipation parameters ; 
X, Z, transformed co-ordinates defined by 

equation (3a); 

Y> transformed normal distance defined by 
equation (5). 

Greek symbols 

a,B, swirl and longitudinal acceleration 
parameters defined by equation (3d); 

constant circulation; 
semi-vertical angle of the nozzle ; 
viscosity ; 
longitudinal, tangential and normal 
directions, respectively; 
dimensionless longitudinal distance; 
density; 
shear stress along 5 and q directions, 
respectively; 
density-viscosity product ratio defined 
by equation (3~); 
exponent in the power-law variation of 
viscosity. 

Superscripts 

prime denotes differentiation with 
respect to Z. 

Subscripts 

e, 

i, 
W, 

denotes condition at the edge of the 
boundary layer ; 
denotes inlet condition; 
denotes condition at the surface 
i=z=o. 

1. INTRODUCTION 

SWIRLING flows are encountered in rockets (especially 
spin-stabilized rockets), plasma jets, vortex valves, jet 
engines, industrial furnaces (vortex burners), twisted- 
tape swirl generators, swirl atomizers, and many other 
types of machinery. They have been the subject of 
numerous theoretical and experimental studies. Lew- 
ellen [l] and Murthy [2] have made an extensive 
survey of swirling flows and their applications. Swirl- 
ing flows through nozzles are generally compressible, 
three-dimensional and non-similar in character and 
their exact prediction requires the solution of a set of 
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coupled non-linear partial differential equations. Such 

equations are rather difficult to solve and require 
considerable manpower and computer time. Hence 
most of the investigators have obtained the solution of 
the governing equations under certain simplifying 

assumptions. 
The velocity profiles in the laminar boundary layer 

in swirling flow of an incompressible viscous fluid in a 
convergent nozzle was first investigated by Taylor [3] 

who considered the case of a dominant tangential flow 
superimposed upon a secondary axial flow. Recently, 
Houlihan and Hornstra [4] have studied the above 

problem by taking into account the effect of boundary- 
layer growth upon the tangential and axial velocities m 

the free-stream. They found that, in contrast todthe 
results obtained by Wilks [5], no “velocity overshoot” 

exists within the boundary layer. Back [6] has studied 
the effect of swirl on the flow and heat transfer in an 

axisymmetric compressible low-speed laminar boun- 
dary layer for a gas with constant properties (p I 7’ ‘. 

p x T, Pr = 1) flowing in a channel of variable cross- 

sectional area and also in a convergent conical nozzle. 
The partial differential equations governing the Row 
were reduced to ordinary differential equationa by 

similarity transformations and then solved by quasi- 
linearization technique in conjunction with the concept 
of local similarity. Muthanna and Nath 171 have 
extended the work of Back [6] to include variable gas 

properties, non-unity Prandtl number and mass trans- 

fer. 
In this paper, the non-similar problem has been 

studied taking into account realistic gas properties 
(p K T- I, p ;% T”, Pr = 0.7). The partial differential 

equations governing the non-similar flow have been 
transformed into new co-ordinates with finite range by 
means of a transformation which maps an infinite 

interval into a finite one and the resulting equations 
have been solved numerically using an implicit finite- 

difference scheme [8 -91. The numerical computations 
have been carried out for compressible swirling flow 

through a convergent conical nozzle. 

2. GOVERNING EQUATIONS 

The governing partial differential equations for 
laminar compressible boundary layer in swirling flow 
of a perfect gas with variable properties (p 1 T- ‘. 
p CC ‘j-O’, Pr = 0.7) over an axisymmetric surface 01 

variable cross-section caused by imposing a free- 
vortex on longitudinal flow in dimensionless form are 

C61 
(c$f”)‘+.ff”‘+/I[(p,/p)- /“‘] +x[(l’,ip-.sL] 

= 2XC,f’(r:‘1’li’X)-f”‘(c?f’liX)] (la) 

(C#Ls’)r+f? = 2X[,f“(is.!c’X)-s’(i~,,iX)] (lb) 

($g’/Pr)’ +.fS’+ (uS/QH,.) 

x {2C#+ 1 - (l/Pr)] [.f“.f”’ + (UJU,)?sS’] ; ’ 

= 2X[ f’(c’y.‘iX)-g’(c:f’:iX)]. (lc) 

The boundary conditions are 

where 

Z = (rp,u,)(U) ’ ’ ( (p ,J,,)d;. 
. ‘1 ,. 

.y= i pa,p,li,,~- d. 
” ” 

It may be remarked that cu :- I gives the constant 

density -viscosity product simplification (C#J = 1 ). 
o) =0.7 is appropriate for low-temperature flows white 
CO = 0.5 may be regarded as a limiting value for high- 

temperature flows [lo]. We have considered the 
Prandtl number Pr as a constant because in most 
problems involving air as the working fluid. its 

variation in the boundary layer is small. 
The skin-friction coefficients along the longitudinal 

and tangential directions are, respectively. given by [6] 

(‘I = ?tz/p,,14j = [(2/X )‘,‘rpc,]t;~~ 14a1 

i‘, = 2?,,,‘(/,,u: = [(2/X )’ +,,..1,,. )?&,&s;,. i4bi 

Similarly. the heat-transfer coefficient in the form ot 

Stanton number can be expressed as [6] 

Sr = q][(N<,-H,v)p,.f4,,] =- rp,12X) ‘,“G:,. 14c) 

where 

r4d) 

3. TRANSFORMATION TO FINITE CO-ORDINATES 

The governing equations (1) are transformed to a 
new system of co-ordinates wherein the infinite range 
of integration (0, CC) on Z is replaced by a finite range 

(0. 1). The transformation is given by [S] 

J’ = 1 -exp( --n%) (5) 

where L( is a scaling factor to provide an optimum 
distribution of nodal points across the boundary layer 
[IS]. Defining (L?f/‘fiaZ) = F. a(1 -!I = z and changing 
the variable Z to 3’ by means of (5). equations (1) 
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become 

~z2~yy+Z(Z~y-~~+f)~y+P~(P,/P)-~Zl 
+ 4k.l~) - ~"1 = 2X(FF, -zfXFy) (64 

dz%,, +z(z& - a4 +f)s, = 2X(Fs, - z&J (6b) 

(ti/Pr)~zs,, + z[(zG - a4)Pr +fls, 
-[I - (Wr)l(~3K){(~ +P)(P,/PF 
-F(BFZ+as2)+zF,(fF-z~F,) 
- (Qh,)2z(z~s, -fs)s,l 

= 2x {(Fg, - zF,g,) - [WF, - &Fy) 
+ (~,/kYS(~Sx -dxsJl 
x [(I - W)(4lK)I1 (6~) 

where 

f = s ;&dy+fw, 

s fW = -(2X)_ 1/Z i (pw),r d5. 

(7) 

The boundary conditions (2) are now transformed to 

F(X, 0) = s(X, 0) = 0, g(X, 0) = g,, 
F(X,l)=s(X,1)=g(X,l)=l 

(8) 

The parameters fc, s: and g; occurring in (4) can be 
expressed as 

f; = UP,),, s:, = a(~,),, s:, = a&J,. (9) 

It may be noted that p,/p and C$ which occur in (6) are 
given by (3b) and (3c), respectively. 

4. METHOD OF SOLUTION 

The axisymmetric boundary-layer flow with swirl 
for any arbitrary body may be studied provided the 
variation of c(, 8, u, and v, with the longitudinal 
distance X (or 5) is known. The governing equations 
(6) under conditions (8) may be converted into a set of 
implicit finite-difference equations and the resulting 
linear tridiogonal matrix equations may be solved by 
the use of the Thomas algorithm [ll]. This method is 
essentially the same as that employed by Marvin and 
Sheaffer [S] and Vimala and Nath [9], except that the 
fully implicit finite-difference scheme instead ofcrank- 
Nicholson finite-difference scheme and Thomas 
algorithm instead of the algorithm given by Varga 
[12] have been used. Since detailed description of the 
method along with its application to boundary-layer 
equations without swirl has been given in [S, 91, for the 
sake of brevity, it is not described here. It may be noted 
that the use of Thomas algorithm for the solution of 
tridiogonal matrix equations takes less computer time 
as compared to the matrix inversion method [ll]. 

5. RESULTS AND DISCUSSION 

The solutions of equations (6) under conditions (8) 
for both swirling (a > 0) and non-swirling [a = 0, 
(a,/~,)~ = 0] flows have been obtained on an 
IBM 360/44 computer in the case of a conical con- 

vergent nozzle. For this case, we have [6] 

u, = bJr2, v, = I-Jr, 

r = L(l-Qsini, 5 = t/L 
(W 

a = 2( 1 -Q&/u,)‘, p = 4Q( 1 - e) (lob) 

t&H, = (u,Z/HJi( 1 - i;)- 4, 

r&H, = (v,z/H,),(l - [)- 2 
(1Oc) 

(r&J2 = (@&JZ(l -F)“, 
x(a/ax) = Qa/a[). (1Od) 

The computations have been carried out for (v,/u,)~ 
= 1,lO; (II~/H,)~ = 0.01,O.l and (U,2/H,)i = 0.01. Here 
Pr is taken as 0.7 and a = 0.5. The step size Ay = 0.005 
and At = 0.05 have been used for computation and 
further reduction in them does not change the results 
up to the third decimal place. The effect of mass 
transfer is not considered in the present case (i.e. f, 
= 0). It is evident from (10~) that, for given (Uz/He)i 
and (vi/H& $/He and $/He rapidly increase with l 
and they tend to infinity as < -+ 1. It can also be seen 
that 1 -(r$ + v,Z)/2H, [which occurs in the de- 
nominator of (6)] tends to zero for some critical value 
([)* < 1, depending on the magnitude of (Ui/HJi and 
(zI:/H,)~. Hence, the solutions are not valid beyond the 
critical values of t. The range of the validity of the 
solutions decreases as ($/He), and (vz/HJi increase. It 
is clear that the dissipation terms t&H, and vz/H, 
affect the solutions significantly. It may be remarked 
that Back [6] has investigated the above problem for 
Pr = 1 by neglecting the variation of the 
density-viscosity product across the boundary layer 
and the dissipation terms. Using the concept of local 
similarity, he solved the governing ordinary differ- 
ential equations by the technique of quasi-linearization. 
In order to compare our results with those obtained by 
using local-similarity method [6], we have also solved 
the governing equations using local-similarity concept 
for Pr = 0.7 and w = 1,0.7,0.5 taking into account the 
effect of viscous dissipation and employing the implicit 
finite-difference scheme as discussed earlier. 

Although the numerical computations were carried 
out for several values of the parameters, only some 
representative velocity (both longitudinal and swirl 
velocities) and total enthalpy profiles are depicted in 
Figs. l-3. It is evident from these figures that the 
profiles f', s and g become more steep when w or 5 
increases. It may be noted that there is no “velocity 
overshoot” in longitudinal velocity profiles. Similar 
behaviour has been observed by Houlihan and 
Hornstra [4] for the incompressible case. As can be 
seen from the figures, the effects of w and z on the 
velocity and total enthalpy profiles are quite significant. 

The variation of Ft, SW and GL with g is displayed in 
Figs. 4-9. Figures 4-9 also contain some repre- 
sentative results obtained by the local-similarity 
method. In general, for a given value of w, g,(O < g, < 1) 
and (Ui/H,)i, Fc, SW and GI, increase at every point of 
the convergent section of the nozzle except at the inlet 
(i.e. when { = 0) when (vJu.Ji or (vz/HJi increases. 
Similar behaviour is also observed when w decreases 
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FIG. I. L~ng~tud~n~l velocity profiles. 
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FIG. 3. Total enthalpy profiles. 
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FIG. 4. Variation of longitudinal skin friction with [ (gW = 0.2). 
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FIG. 5. Variation of longitudinal skin friction with E (gW = 0.6). 

or g,,, increases. It may be mentioned that, as w increases with f till a certain value and then it begins to 
decreases, the parametersf;, s; and g; which occur in decrease. On the other hand, the behaviour of SW is 
skin-friction and heat-transfer coefficients [see equa- similar to that of GL when (u,/u,)~ > 1, but it behaves 
tions (4)] decrease, but & [see equation (3c)] in- like Fi when (aJU,)i = 1. The results indicate that CI 
creases. Consequently, FE, SW and GL [see equation exerts a strong influence on Fi, but its effect on Sk and 
(4d)] increase as w decreases. It is also seen that for Gk is comparatively small. It is further observed that 
given value of a, Fk increases as f increases but Gk the effect of CI on Fz, SW and G; near the inlet region is 
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FIG. 6. Variation of tangential skin friction with < (9, = 0.2). 

0.4 I 

(*)+o,($)i --0.1 

I I 

1 EL 
0 0.2 

T 
04 0.6 

F‘lti. 7. Variation of tangential skin frictton with < (q,, = 0.6) 

less as compared to other section of the nozzle It may those obtained by Back [6] and Muthanna and Nath 

be remarked that the effect of variation of w on Fg, Sl; [7] using quasi-linearization and parametric differ- 

and Gk is more pronounced when g, = 0.2 than when entiation techniques, respectively. It is evident from 

g,,, = 0.6. Therefore, it can be concluded that the linear Figs. 4- 9 that the skin-friction and heat-transfer 

viscosity-temperature relation is not a good approxi- results obtained by local-similarity method are in good 

mation at low-wall temperatures for calculating skin agreement with the finite-difference results when [ is 

friction and heat transfer. It may be remarked that our small, but for skin friction in the longitudinal direction, 

results for [ = 0 (similar solution) are the same as good agreement between the two methods is observed 
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o-Local similarity 

FIG. 8. Variation of heat transfer with 5 (gw = 0.2). 
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FIG. 9. Variation of heat transfer with { (g, = 0.6). 

even for large 5. It can be seen from Figs. 4-9 that the 
local-similarity method underestimates the heat trans- 
fer and skin friction in the tangential direction (ob- 
tained by finite-difference scheme) along the con- 
vergent section of the nozzle except in the inlet region. 

6. CONCLUSIONS 

The longitudinal skin friction is strongly dependent 
on swirl whereas the dependence of heat transfer and 

tangential skin friction on swirl is comparatively weak. 
The effect of the variation of the density-viscosity 
product across the boundary layer is pronounced only 
at low-wall temperature indicating that the linear 
viscosity-temperature relation is not a good approxi- 
mation at low-wall temperature for calculating skin 
friction and heat transfer. The results are found to be 
in good agreement with those obtained by local- 
similarity method for small values of longitudinal 
distance. 
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ECOULEMENT ET TRANSFERT THERMIQUE DANS UN MOUVEMENT 
TOUR~~LLON~AIRE PERMANENT DANS UNE TlJYERE AVEC COliCHE 

LIMITE LAMINAIR~ ET COMPRESSIBLE 

Resume---On etudie un ecoulement axisymetrique et tourbil~onn~~ire de gaz a prop&es variables dam 
une tuyire avec couche limite laminaire et compressible. Lcs equations aux d&iv&es partielles sont 
transform&es darts de nouvelles coordonnies ayant un domaine fini, a I’aide dune transformation qui 
ram&e un domaine infinr en un autre fini. Les equations resultantes ont ite rtsotues numeriquement en 
utilisant une procedure impllcite aux differences finies. L.es calculs ont et& faits pour un ecoulement 
compressible et tourbillonnaire a travers une tuyire conique convergente. Les resultats indiquent que le 
tourbifion exerce une forte influence sur le frottement longitudinal a la paroi. mais son effet sur le 
frottement tanpentiel et sur le transfert thermique est comparativement faible. L’effet de la variation du 
produit masse volumique-viscosite dans la couche iimite est appreciable seulement aux faibles 
temperatures de paroi. Les r&hats sont en bon accord avec ceux de la methode de la similitude locale 

pour les faibles valeur de la distance longitudinale. 

STATr~N~RE STR~MUNG UND W~RME~~~RGANG IN DER 
LAMINAREN, KOMPRESS~BL~N GRENZSCHICHT IN EJNER D&X 

MIT DRALLSTRijMUNG 

Zusammenfassung-Die achsensymmetrische station&e Drallstriimung eines Gases mu laminarer 
kompressibler Grenzschicht und verlnderlichen Stoffwerten in einer Diise wurde untersucht. Die 
partiellen Differentialgleichungen, welche die nicht ahnliche Striimung bestimmen, wurden in neue 
Koordinaten mit endlichen Bereichen transformiert. wobei eine Transformation verwendet wurde, die 
einen unendlichen auf einen endlichen Bereich abbildet. Die sich daraus ergebenden Gleichungen wurden 
numerisch mit Hitfe eines impliziten finiten Differenzenverfdhrens gcliist. Die Berechnungen wurden 
ausgefiihrt fur kompressible Drallstriimung durch eine konvergente konische Diise. Die Ergebnisse 
zeigen, da8 der Drall einen groBen Einflug auf die Wandreibung in Langsrichtung hat, jedoch sein EintIuB 
auf die tangentiale Wandreibung und den Warmeiibergang verhaltnismlBig klein ist. Die Auswirkung der 
Variation des Produktes aus Dichte und Zahigkeit quer zur Grenzschicht ist nur bei niedrigen 
Wandtemperaturen von Bedeutung. Die Ergebnisse zeigen fur kleine Werte des Langsabstandes gute 

~bere~nstimmung mit denen der &lichen ~hnlichke~tsmethode. 


